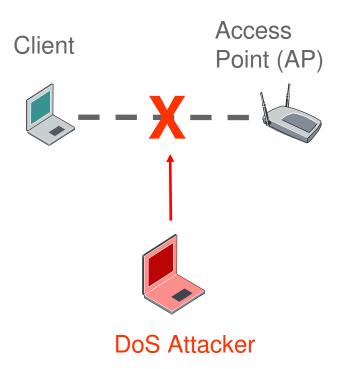


Global Leader in Wireless Security

Hooray, 802.11w Is Ratified... So, What Does it Mean for Your WLAN?


A Brief Tutorial on IEEE 802.11w

Gopinath K N and Hemant Chaskar

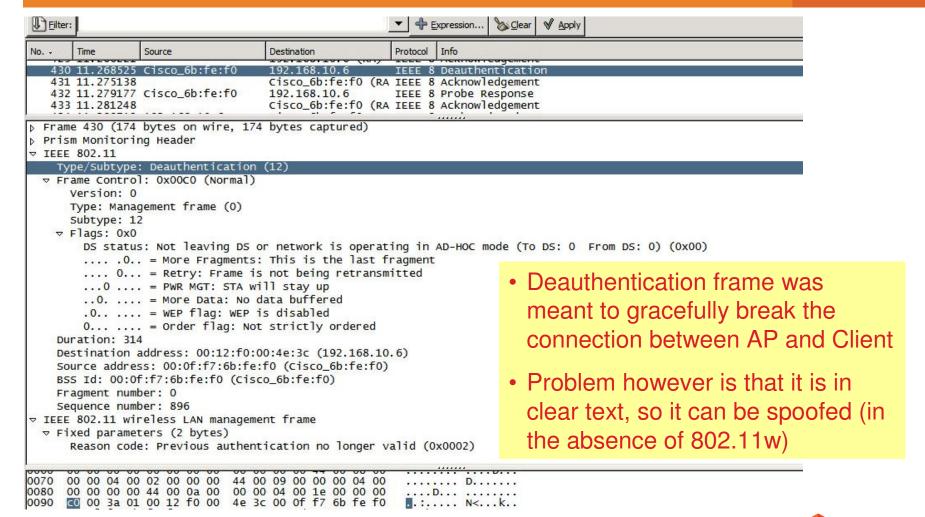
AirTight Networks www.AirTightNetworks.com

Background

- 802.11 WiFi going from "convenience" to "mission critical"
- However, ever since inception, WiFi has been vulnerable to Denial of Service (DoS) attacks of various types:
 - RF Jamming
 - Virtual Jamming
 - Spoofed Disconnect
 - EAP Spoofing
 - Connection Request Flooding
 - · etc.

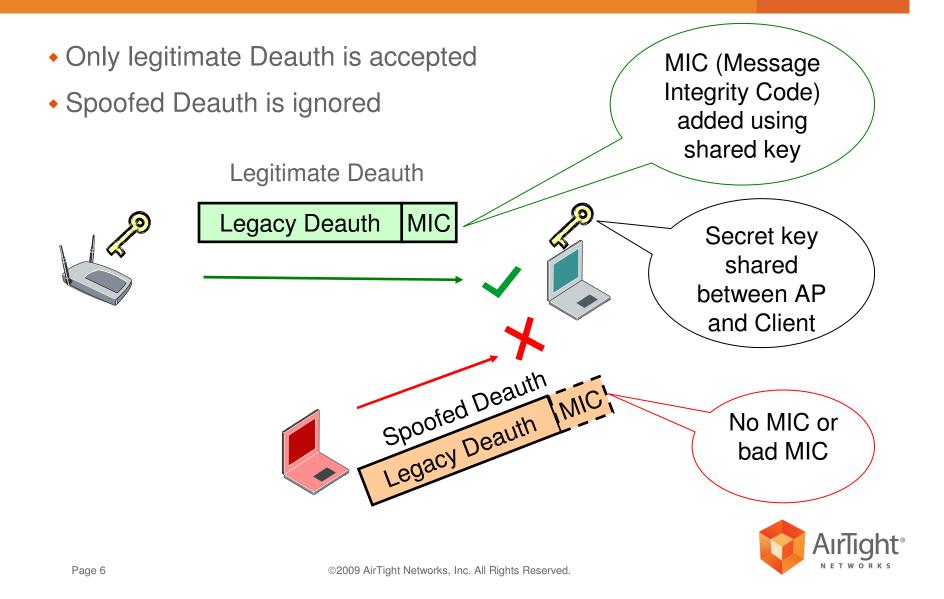
802.11w: A step in the direction of DoS avoidance

- 802.11w gets rid of "Spoofed Disconnect" DoS attacks resulting from spoofing of
 - (i) Deauthentication (Deauth), (ii) Disassociation (Disassoc), (iii) Association (Assoc) Request in existing connection, or (iv) Authentication (Auth) Request in existing connection
- Certain "Action Management Frames" are also made anti-spoofing
 - Spectrum Management, QoS, BlockAck, Radio Measurement, Fast BSS Transition


How does 802.11w avoid Spoofed Disconnect DoS

 802.11w adds cryptographic protection to Deauth and Disassoc frames to make them anti-spoofing

 Mechanism called Security Association (SA) teardown protection is added to prevent spoofed Assoc Request or Auth Request from disconnecting the already connected Client



Example: Deauth Attack

Example: Deauth attack averted with 802.11w

Where does the shared secret key come from

- It is derived using EAPOL 4-way handshake between AP and Client
- This also means that 802.11w can only be used if you are using WPA or WPA2
- Broadcast/multicast management frames are protected using a key called Integrity Group Temporal Key (IGTK)
- Unicast management frames are protected using WPA/WPA2 pair-wise encryption key (PTK)

SA teardown protection

- Pre 802.11w, if AP receives Assoc or Auth Request from already associated Client, it terminates existing connection to start a new one
 - So existing connection can be broken with spoofed Auth Request or Assoc Request
- With SA teardown of 802.11w
 - After AP receives Assoc or Auth Request for associated Client,
 - Crypto protected probe is sent to Client
 - If crypto protected response is received, the Assoc or Auth Request is considered spoofed and rejected
 - Else, existing connection is terminated to start a new one

How are Action Mgmt Frames made spoof resistant

- By adding authentication & encryption using IGTK
 - Spectrum Management
 - QoS
 - DLS
 - Block Ack
 - Radio measurement
 - Fast BSS Transition
 - HT
 - SA Query
 - Protected Dual of Public Action

802.11w: A piece in WiFi security puzzle

- 802.11w averts Spoofed Disconnect DoS and makes Action Management Frames spoof-resistant
- Other DoS attacks (RF jamming, virtual jamming, EAP spoofing, connection request flooding etc.) are outside the scope of 802.11w
- WPA/WPA2 is still needed for client authentication and data encryption. Also WPA/WPA2 is needed for 802.11w to work
- Threats from unmanaged devices (rogue APs, mis-associations, ad hoc connections, honeypots (Evil Twin), AP/client MAC spoofing, cracking, infrastructure attacks (skyjacking) etc.) are outside the scope of 802.11w
- You should definitely enable 802.11w in your WLAN when it becomes available (shortly) in WLAN equipment, but one should not be complacent that it will solve all wireless security problems

Questions/comments

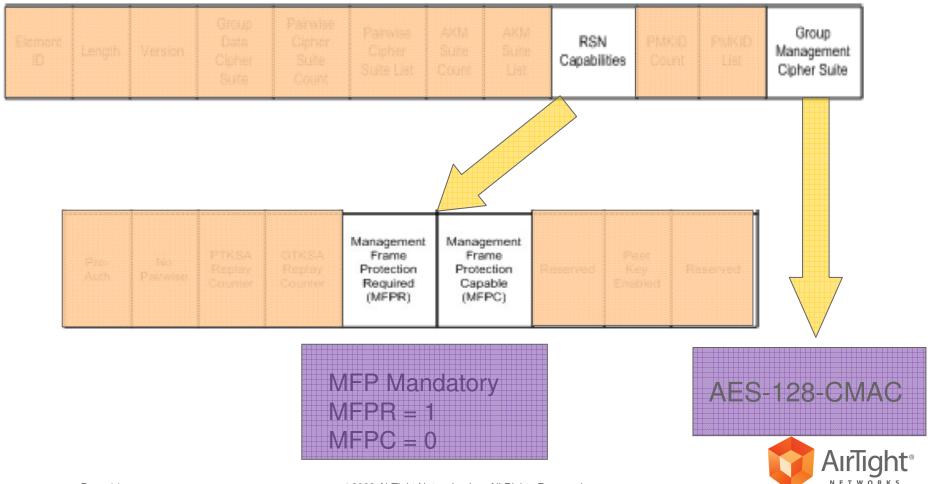
Please discuss@

http://blog.airtightnetworks.com/802-11w-tutorial/

Appendix 1: Broadcast Integrity Protocol (BIP)

- Provides authentication and replay protection for broadcast/multicast Management Frames
- Uses "Integrity Group Temporal Key" (IGTK), a new key derived & distributed via EAPOL 4-way handshake
- Transmitter appends each protected frame with a Management MIC Information Element (IE)
- Receiver validates the MIC before accepting the frame

Appendix 2: Message Integrity Check (MIC) IE


ID Length Key ID IPN MIC

- ID
 - Information Element number
- Key ID
 - Indicates the IGTK used for computing MIC
- IPN
 - Used for replay protection
 - Monotonically increasing non-negative number
- MIC
 - The keyed cryptographic hash derived over management frame body (Payload + MAC header)

 AITIght

Appendix 3: 802.11w parameter negotiation

Negotiated at the beginning of Association

